Mathématiques: Centres Etrangers Jour 2 (06 juin 2024)

Exercice 1:

Partie A : Étude de la fonction f

- 1. Déterminons les limites de la fonction aux bornes de son ensemble de définition :
 - $\lim_{x \to 0} x^2 = 0 \text{ et } \lim_{x \to 0} x \ln(x) = 0 \text{ par croissance comparée. } \lim_{x \to 0} (-x \ln(x)) = 0 \text{ par produit}$

Donc, par somme, $\lim_{x\to 0} f(x) = 0$.

• $x^2 - x \ln(x) = x^2 \left(1 - \frac{\ln(x)}{x} \right)$ $\lim_{x \to +\infty} x^2 = +\infty \text{ et } \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \text{ par croissance comparée.}$

Par somme et produit sur les limites, $\lim_{x \to +\infty} f(x) = +\infty$

2. Pour tout x > 0, on a :

$$f'(x) = 2x - 1 \times \ln(x) - x \times \frac{1}{x}$$
$$f'(x) = 2x - \ln(x) - 1$$

3. Pour tout x > 0, on a :

$$f''(x) = 2 - \frac{1}{x}$$

 $f''(x) = \frac{2x - 1}{x}$

4. Étude des variations de f':

$$2x - 1 \ge 0 \iff x \ge \frac{1}{2}$$

Donc pour tout x > 0, f''(x) a le même signe que 2x - 1

x	0		<u>1</u> 2		+∞
f''(x)	-	_	0	+	

f''(x) est négative sur]0; [1/2] donc f' est décroissante sur [0]; [1/2].

f''(x) est positive sur [½; + ∞ [donc f' est croissante sur [½; + ∞ [.

x	0	$\frac{1}{2}$	+∞
f'	/	ln(2)	\

$$f'\left(\frac{1}{2}\right) = 2 \times \frac{1}{2} - \ln\left(\frac{1}{2}\right) - 1$$
$$f'\left(\frac{1}{2}\right) = 1 + \ln(2) - 1$$
$$f'\left(\frac{1}{2}\right) = \ln(2)$$

$$f'\left(\frac{1}{2}\right) = 1 + \ln(2) - 1$$

$$f'\left(\frac{1}{2}\right) = \ln(2)$$

5. D'après la question précédente, la fonction f' admet un minimum de $\ln(2)$ en $x = \frac{1}{2}$ sur 0; $+\infty$ [.

Ainsi f'(x) est strictement positive sur]0; $+\infty[$ et la fonction f est strictement croissante sur]0; $+\infty[$.

Partie B : Étude d'une fonction auxiliaire pour la résolution de l'équation f(x) = x

1. Dérivons g:

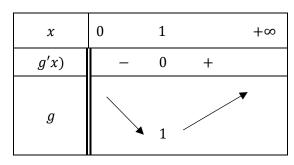
$$g(x) = x - \ln(x)$$

ainsi
$$g'(x) = 1 - \frac{1}{x}$$

$$g'(x) = \frac{x-1}{x}$$

Sur]0; $+\infty$ [, g'(x) est du signe de x-1

$$x - 1 \ge 0 \iff x \ge 1$$



$$g(1) = 1 - \ln(1) = 1$$

2. Résolution de
$$f(x) = x$$

$$f(x) = x \iff x^2 - x \ln(x) = x$$

$$f(x) = x \Leftrightarrow x(x - \ln(x)) = x$$

$$f(x) = x \Leftrightarrow x g(x) = x$$

$$f(x) = x \Leftrightarrow xg(x) - x = 0$$

$$f(x) = x \iff x(g(x) - 1) = 0$$

$$f(x) = x \Leftrightarrow x = 0 \text{ ou } g(x) - 1 = 0$$

Or x > 0 donc:

$$f(x) = x \iff g(x) - 1 = 0$$

$$f(x) = x \iff g(x) = 1$$

D'après la question précédente, l'équation g(x)=1 admet 1 comme unique solution.

Donc l'équation f(x) = x a pour unique solution x = 1 sur $]0; +\infty[$.

Partie C : Étude d'une suite récurrente

1. Soit la propriété P(n): $\frac{1}{2} \le u_n \le u_{n+1} \le 1$.

Initialisation:
$$u_0 = \frac{1}{2}$$
 et $u_1 = f(u_0) = f(\frac{1}{2}) = \frac{1}{4} + \frac{1}{2} \ln 2 \approx 0.6$

Ainsi $\frac{1}{2} \le u_0 \le u_1 \le 1$ et P(0) est vraie.

Hérédité:

Supposons la propriété P(n) vraie pour un entier naturel k, c'est-à-dire $\frac{1}{2} \le u_k \le u_{k+1} \le 1$.

Montrons que $\frac{1}{2} \le u_{k+1} \le u_{k+2} \le 1$ est vraie.

Par hypothèse de récurrence on a : $\frac{1}{2} \le u_k \le u_{k+1} \le 1$

Et $u_{n+1}=f(u_n)$ avec f strictement croissante sur $]0;+\infty[$ d'après la question 5, partie A. donc

$$f\left(\frac{1}{2}\right) \le f(u_k) \le f(u_{k+1}) \le f(1)$$
$$\frac{1}{4} + \frac{1}{2}\ln 2 \le u_{k+1} \le u_{k+2} \le 1$$
$$\frac{1}{2} \le u_{k+1} \le u_{k+2} \le 1$$

P(k+1) est vraie.

<u>Conclusion</u>: La propriété est vraie au rang 0 et elle et héréditaire donc $\frac{1}{2} \le u_n \le u_{n+1} \le 1$ pour tout entier naturel n.

2. D'après la question précédente, $u_n \le u_{n+1}$ donc (u_n) est croissante.

De plus, $u_n \le 1$ donc la suite (u_n) est majorée.

D'après le théorème de convergence monotone, toute suite croissante et majorée converge. Donc (u_n) converge.

3. On a
$$\lim_{n\to +\infty} u_n = \ell$$
 et $f(u_n) = u_{n+1}$ donc $\lim_{n\to +\infty} u_n = f(\ell)$

Or par unicité de la limite $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} \operatorname{donc} f(\ell) = \ell$

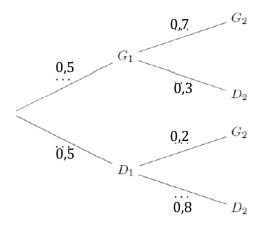
D'après la question 2, partie B, l'équation f(x) = x admet une unique solution $\ell = 1$.

> Exercice 2

1. $P_{G_1}(D_2)$ est la probabilité que Léa perde la deuxième partie sachant qu'elle a gagné la première partie. C'est la probabilité de l'événement contraire : « Léa gagne la partie suivante sachant qu'elle a gagné la précédente ». D'après l'énoncé :

$$P_{G_1}(D_2) = 1 - 0.7 = 0.3$$

2.



3. g_2 est $P(G_2)$. G_1 et D_1 forment une partition de l'univers. D'après la formule des probabilités totales :

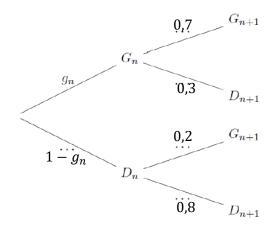
$$g_2 = P(G_1 \cap G_2) + P(D_1 \cap G_2)$$

$$g_2 = P(G_1) \times P_{G_1}(G_2) + P(D_1) \times P_{D_1}(G_2)$$

$$g_2 = 0.5 \times 0.7 + 0.5 \times 0.2$$

$$g_2 = 0.45$$

4.a. On a:



4.b. G_n et D_n forment une partition de l'univers. D'après la formule des probabilités totales :

$$g_{n+1} = P(G_n \cap G_{n+1}) + P(D_n \cap G_{n+1})$$

$$g_{n+1} = P(G_n) \times P_{G_n}(G_{n+1}) + P(D_n) \times P_{D_n}(G_{n+1})$$

$$g_{n+1} = g_n \times 0.7 + (1 - g_n) \times 0.2$$

$$g_{n+1} = 0.5g_n + 0.2$$

5.a.

$$v_{n+1} = g_{n+1} - 0.4$$

$$v_{n+1} = 0.5g_n + 0.2 - 0.4$$

$$v_{n+1} = 0.5g_n - 0.2$$

$$v_{n+1} = 0.5\left(g_n - \frac{0.2}{0.5}\right)$$

$$v_{n+1} = 0.5(g_n - 0.4)$$

$$v_{n+1} = 0.5v_n$$

Ainsi (v_n) est géométrique de raison 0,5 et de premier terme $v_1=g_1-0,4=0,1$

5.b. Du résultat précédent on en déduit la forme explicite de (v_n) :

$$v_n = v_1 \times q^{n-1}, \forall \ n \in \mathbb{N}^*$$

$$v_n = 0, 1 \times 0, 5^{n-1}, \forall \ n \in \mathbb{N}^*$$

Or
$$v_n=g_n-0.4 \Leftrightarrow g_n=v_n+0.4$$

$$\operatorname{donc} g_n=0.1\times 0.5^{n-1}+0.4 \quad \forall \ n\in \mathbb{N}^*$$

6. Étude des variations de la suite (g_n) :

$$g_{n+1} - g_n = 0.1 \times 0.5^n + 0.4 - 0.1 \times 0.5^{n-1} - 0.4$$

$$g_{n+1} - g_n = 0.1 \times 0.5^n - 0.1 \times 0.5^{n-1}$$

$$g_{n+1} - g_n = 0.1 \times 0.5^n (1 - 0.5^{-1})$$

$$g_{n+1} - g_n = -0.1 \times 0.5^n$$

Ainsi $g_{n+1}-g_n<0$, $\forall~n\in\mathbb{N}^*$ et la suite (g_n) est strictement décroissante.

7. Limite de la suite (g_n) :

$$\lim_{n \to +\infty} 0.5^{n-1} = 0 \text{ avec } \lim_{n \to +\infty} q^n = 0 \text{ lorsque } -1 < q < 1$$

Donc par produit puis somme $\lim_{n\to+\infty} 0.1 \times 0.5^{n-1} + 0.4 = 0.4$

$$\lim_{n\to+\infty}g_n=0.4$$

La probabilité que Léa gagne la n-ième partie tend vers 0,4 après un grand nombre de partie jouées.

8. Résolvons:

$$g_n - 0.4 \le 0.001$$

$$\Leftrightarrow v_n \le 0.001$$

$$\Leftrightarrow 0.1 \times 0.5^{n-1} \le 0.001$$

$$\Leftrightarrow 0.5^{n-1} \le 0.01$$

$$\Leftrightarrow \ln(0.5^{n-1}) \le \ln(0.01)$$

$$\Leftrightarrow (n-1) \times \ln(0.5) \le \ln(0.01)$$

$$\Leftrightarrow n-1 \ge \frac{\ln(0.01)}{\ln(0.5)}$$

$$\Leftrightarrow n \ge \frac{\ln(0.01)}{\ln(0.5)} + 1$$

$$\Leftrightarrow n \ge 8$$

Le plus petit entier naturel n tel que $g_n - 0.4 \le 0.001$ est n = 8.

9.

while g > 0.4+e: on indique la condition contraire de ce qu'on veut.

g = 0.5*g+0.2 on note qu'il manque un * entre 0.5 et g dans le code proposé.

n=n+1 on incrémente la valeur de n d'une unité à chaque boucle effectuée.

> Exercice 3

1. Affirmation vraie:

$$\frac{3n^2 + 4n + 7}{6n^2 + 1} = \frac{3 + \frac{4}{n} + \frac{7}{n^2}}{6 + \frac{1}{n^2}}$$

$$\lim_{n \to \infty} 3 + \frac{4}{n} + \frac{7}{n^2} = 3 \text{ et } \lim_{n \to \infty} 6 + 1/n^2 = 6. \text{ Donc par quotient } \lim_{n \to \infty} \frac{3n^2 + 4n + 7}{6n^2 + 1} = \frac{1}{2}$$

D'après le théorème des gendarmes, $\lim_{n\to\infty}u_n=\frac{1}{2}$.

2. Affirmation fausse

D'après la représentation graphique de la fonction h':

h' est croissante sur [-1; 1,4] et décroissante sur [1,4; 3] donc

h est convexe sur [-1; 1,4] et concave sur [1,4; 3].

3. Affirmation vraie

Dénombrons le nombre total de codes. On choisit 4 fois 1 chiffre parmi 10 puis 1 lettre parmi 3 puis une lettre parmi 2. Le choix des chiffres est un k-uplet, le choix des lettres est un arrangement.

$$10^4 \times 3 \times 2 = 60\,000$$

Dénombrons le nombre de code sans 0. On choisit 4 fois un chiffre parmi 9 puis 1 lettre parmi 3 puis une lettre parmi 2.

$$9^4 \times 3 \times 2 = 39366$$

Le nombre de codes avec au moins un zéro est le nombre total de code privé du nombre de codes sans $0: 60\ 000 - 39\ 366 = 20\ 634$

4. Affirmation vraie

$$x \times f'(x) - f(x) = x \times \left(1 \times \ln(x) + x \times \frac{1}{x}\right) - x \ln(x)$$
$$x \times f'(x) - f(x) = x \times (\ln(x) + 1) - x \ln(x)$$
$$x \times f'(x) - f(x) = x \ln(x) + x - x \ln(x)$$
$$xf'(x) - f(x) = x$$

> Exercice 4

Partie A

1. Testons les coordonnées des points dans l'équation du plan :

$$2 \times 1 + 2 \times 0 - 3 \times 1 + 1 = 2 + 3 - 1 = 0$$
 donc $A(1; 0; 1) \in (P)$

$$2 \times 2 + 2 \times (-1) - 3 \times 1 + 1 = 4 - 2 - 3 + 1 = 0$$
 donc $B(2; -1; 1) \in (P)$

$$2 \times (-4) + 2 \times (-6) - 3 \times 5 + 1 = -8 - 12 - 15 + 1 = -34 \, \text{donc} \, C(-4; -6; 5) \notin (P)$$

2. Montrons l'orthogonalité de (CC') au plan (P) :

D'après l'équation cartésienne du plan (P), un vecteur normal au plan (P) est $\vec{n} \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$.

De plus :
$$\overrightarrow{CC'}\begin{pmatrix} 0+4\\ -2+6\\ -1-5 \end{pmatrix}$$
 $\overrightarrow{CC'}\begin{pmatrix} 4\\ 4\\ -6 \end{pmatrix}$

On remarque que $\overrightarrow{CC'}=2\overrightarrow{n}$. Ces deux vecteurs sont colinéaires donc la droite (CC') est orthogonale au plan (P).

Vérifions l'appartenance de \mathcal{C}' au plan (P):

$$2 \times 0 + 2 \times (-2) - 3 \times (-1) + 1 = -4 + 3 + 1 = 0$$

Les coordonnées de \mathcal{C}' vérifient l'équation cartésienne du plan (P) donc \mathcal{C}' appartient au plan (P).

Ainsi C' appartient au plan (P) et (CC') est orthogonale au plan (P) donc C' est le projeté orthogonal de C sur (P).

3. La droite (AB) est dirigée par \overrightarrow{AB} et passe par A(1;0;1).

Déterminons les coordonnées de
$$\overrightarrow{AB}$$
 : $\overrightarrow{AB} \begin{pmatrix} 2-1 \\ -1-0 \\ 1-1 \end{pmatrix}$ $\overrightarrow{AB} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

Une représentation paramétrique de (AB) est (AB): $\begin{cases} x=1+t\\ y=-t \text{ , } t\in\mathbb{R}.\\ z=1 \end{cases}$

4. D'après les deux conditions énoncées, les coordonnées de $H(x_H; y_H; z_H)$ vérifient l'équation paramétrique de (AB) et \overrightarrow{HC} . $\overrightarrow{AB} = 0$.

$$\overrightarrow{HC} \begin{pmatrix} -4 - x_H \\ -6 - y_H \\ 5 - z_H \end{pmatrix}$$

$$\overrightarrow{HC} . \overrightarrow{AB} = 0$$

$$\Leftrightarrow (-4 - x_H) \times 1 + (-6 - y_H) \times (-1) + (5 - z_H) \times 0 = 0$$

$$\Leftrightarrow -4 - x_H + 6 + y_H = 0$$

$$\Leftrightarrow -x_H + y_H + 2 = 0$$

On résout alors le système suivant :

$$\begin{cases} x_{H} = 1 + t \\ y_{H} = -t \\ z_{H} = 1 \\ -x_{H} + y_{H} + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x_{H} = 1 + t \\ y_{H} = -t \\ z_{H} = 1 \\ -1 - t - t + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x_{H} = 1 + t \\ y_{H} = -t \\ z_{H} = 1 \\ t = \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} x_{H} = \frac{3}{2} \\ x_{H} = -\frac{1}{2} \\ x_{H} = 1 \\ t = \frac{1}{2} \end{cases}$$

Les coordonnées du point H sont $H\left(\frac{3}{2}; -\frac{1}{2}; 1\right)$.

Partie B

1.
$$\|\overrightarrow{HC}\| = \sqrt{\left(-\frac{11}{2}\right)^2 + \left(-\frac{11}{2}\right)^2 + 4^2}$$

$$\|\overrightarrow{HC}\| = \sqrt{\frac{121}{4} \times 2 + 16}$$

$$\|\overrightarrow{HC}\| = \frac{3\sqrt{34}}{2}$$

2. Le point H appartient à la droite (AB) et (HC) est perpendiculaire à (AB) donc [HC] est une hauteur du triangle ABC.

$$AB = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

$$S = \frac{AB \times HC}{2}$$

$$S = \frac{\sqrt{2} \times \frac{3\sqrt{34}}{2}}{2}$$

$$S = \frac{3\sqrt{17}}{2}$$

L'aire du triangle ABC est $S = \frac{3\sqrt{17}}{2}$ u.a.

Partie C

1. 1ère méthode:

On rappelle que \mathcal{C}' est le projeté orthogonal de \mathcal{C} sur (P). On calcule :

$$\overrightarrow{HC}.\overrightarrow{HC'} = HC'^2 = HC \times HC' \times \cos(\alpha)$$

$$\cos(\alpha) = \frac{HC'^2}{HC \times HC'} = \frac{HC'}{HC} = \frac{\frac{\sqrt{17}}{2}}{\frac{3\sqrt{34}}{2}} = \frac{1}{3}$$

$$\alpha = 70.5^{\circ}$$

2ème méthode plus rapide:

On rappelle que C' est le projeté orthogonal de C sur (P) et que $H \in (P)$ donc C'HC est un triangle rectangle en C'.

Ainsi
$$\cos(\alpha) = \frac{HC'}{HC} = \frac{\frac{\sqrt{17}}{2}}{\frac{3\sqrt{34}}{2}} = \frac{1}{3}$$

2.a.
$$\overrightarrow{C'H} \begin{pmatrix} \frac{3}{2} - 0 \\ -\frac{1}{2} + 2 \\ 1 + 1 \end{pmatrix} \overrightarrow{C'H} \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}$$

$$\overrightarrow{C'H}.\overrightarrow{AB} = \frac{3}{2} \times 1 + \frac{3}{2} \times (-1) + 2 \times 0 = \frac{3}{2} - \frac{3}{2} = 0$$

 $\overrightarrow{C'H}$. $\overrightarrow{AB} = 0$ donc les vecteurs $\overrightarrow{C'H}$ et \overrightarrow{AB} sont orthogonaux. De plus H appartient à (AB) donc les droites (C'H) et (AB) sont perpendiculaires.

2.b. Dans le triangle ABC', [C'H] est la hauteur relative à [AB].

$$S' = \frac{C'H \times AB}{2}$$

$$S' = \frac{\sqrt{\frac{17}{2}} \times \sqrt{2}}{2}$$

$$S' = \frac{\sqrt{17}}{2}$$

L'aire du triangle ABC' est $S' = \frac{\sqrt{17}}{2}$ u.a.

2.c. On a
$$S = \frac{3\sqrt{17}}{2}$$
, $S' = \frac{\sqrt{17}}{2}$ et $\cos(\alpha) = \frac{1}{3}$.

On a donc
$$S' = S \times \cos(\alpha)$$