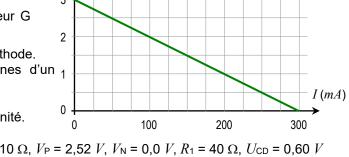
Énergie des systèmes électriques

Exercice 1: **Questions de cours**

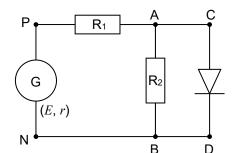
1. Dans un circuit électrique, pour mesurer une tension, un voltmètre se branche toujours en :

2. Dans un circuit électrique, pour mesurer une intensité électrique on utilise un :

4. Aux bornes d'un générateur réel, on a : $E \times I = U_{PN} \times I + r \times I^2$ Que représente le terme $E \times I$?


Exercice 2: Générateur électrique

Dans le circuit électrique de cet exercice, on utilise un générateur G possédant une caractéristique tension-courant donnée ci-contre.


1. (A) Déterminer la force électromotrice de G. Expliquer la méthode.

2. (A) Donner l'expression générale de la tension aux bornes d'un 1 générateur non-idéal.

3. (A) A quoi correspond la pente de la droite $U_{PN} = f(I)$?

4. (B) Calculer la valeur de cette pente en précisant bien son unité.

On donne $E = 3,00 \ V$, $r = 10 \ \Omega$, $V_P = 2,52 \ V$, $V_N = 0,0 \ V$, $R_1 = 40 \ \Omega$, $U_{CD} = 0,60 \ V$

5. (A) Déterminer la valeur de $U_G = U_{PN}$.

(B) En déduire la valeur de l'intensité I_0 débitée par le générateur.

(A) En prenant I_0 = 50 mA, calculer la tension U_{R1} = U_{PA} . 7.

(B) En déduire la valeur de $U_{\rm R2}$ = $U_{\rm AB}$ en expliquant clairement la méthode.

(A) Calculer la puissance utile fournie par le générateur au circuit.

10. (A) Calculer la puissance disponible du générateur puis son rendement.

11. (A) En prenant I_0 = 50 mA, calculer l'énergie dissipée par la résistance R_1 pendant 20 minutes de fonctionnement.

Exercice 3: Circuit électrique

On considère un générateur ayant les caractéristiques suivantes : E = 6,0 V et r = 10 Ω .

Première partie :

Dans un premier temps, l'interrupteur K est ouvert.

- 1.1 Quelle relation mathématique existe-t-il entre I_0 et I_2 ? Justifier.
- 1.2 Donner l'expression des tensions U_{AB} et U_{PN} en fonction de E, r, R_1 et I_0 .
- 1.3 Montrer en le justifiant proprement que l'on peut écrire U_{AB} = U_{PN} .
- 1.4 En déduire la valeur de l'intensité I_0 débitée par le générateur non idéal sachant que R_1 = 50 Ω .

Deuxième partie :

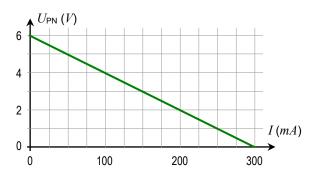
On ferme à présent l'interrupteur K. L'intensité I_0 change et devient égale à 130 mA.

- 2.1 Déterminer la valeur de la tension $U_{\sf PN}$ aux bornes du générateur.
- 2.2 Montrer que dans ces conditions l'intensité I_2 est égale à 94 mA.

- 2.3 En déduire la valeur de I_1 .
- 2.4 Sachant que R_2 = 100 Ω , montrer que U_{DE} = 3,6 V.
- 2.5. En déduire la tension $U_{\rm L}$ aux bornes de la lampe L

Troisième partie :

L'interrupteur K reste fermé pendant 1h30. Pendant cette durée, la lampe a consommé une énergie totale de 215 J.

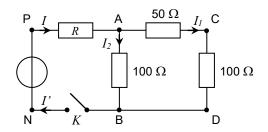

- 3.1 Calculer la puissance de cette lampe de très basse consommation.
- 3.2 Retrouver la tension U_{L} aux bornes de la lampe sachant que l'intensité qui l'a traversée est restée constamment égale à 36 mA pendant toute cette durée.
- 3.3 Sachant que ce type de lampe a un rendement de 40,0 %, déterminer l'énergie lumineuse produite par la lampe.
- 3.4 Qu'advient-il de l'énergie consommée par la lampe mais qui ne s'est pas transformée en énergie lumineuse ?

Exercice 4: Questions de cours

1.	(A) Aux bornes d'un générateur réel, on a : $E \times I = U_{PN} \times I + r \times I^2$. Le terme $U_{PN} \times I$ est appelé :
2.	(B) Dans un circuit électrique, si $V_{\rm A}$ = 12 V et $V_{\rm B}$ = -5 V alors $U_{\rm BA}$ vaut :
3.	(A) Dans un circuit électrique un voltmètre se comporte comme :
4.	(B) Si 4,3 mol d'électrons traversent la section d'un fil électrique pendant 2,0 h, l'intensité électrique vaut alors :
5.	(B) Déterminer le rendement d'un générateur de puissance utile 0,35 W et de puissance dissipée par effet Joule 40 mW :
6.	(A) Définir un nœud dans un circuit électrique :
7.	(B) Déterminer la tension aux bornes d'un générateur de résistance interne 7,0 Ω , de f.e.m. 3,5 V et débitant 250 mA :
8.	(B) Un téléviseur de puissance 250 W fonctionne pendant $2h$ 30. Calculer l'énergie consommée par ce téléviseur :

Dans le circuit électrique de cet exercice, on utilise un générateur G possédant une caractéristique tension-courant donnée ci-contre.

- (A) Déterminer la force électromotrice E de G. Expliquer la méthode. 1.
- (A) Donner l'expression générale de la tension aux bornes d'un 2. générateur non-idéal.
- (A) A quoi correspond la pente de la droite $U_{PN} = f(I)$? 3.
- (B) Calculer la valeur de cette pente en précisant bien son unité. 4.
- 5. (B) A l'aide du graphe, calculer la puissance utile du générateur lorsqu'il débite une intensité de 0,15 A.


Exercice 6: Circuit électrique

On considère le montage électrique ci-contre.

On donne:

 $I = 100 \ mA$ $V_{\rm A} = 6.0 \ V$ E = 9.0 V $r = 0 \Omega$

Pour chaque question, cocher la ou les bonnes réponses à droite.

- 1. L'interrupteur K étant ouvert, cocher la ou les relations justes :

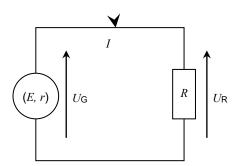
- a) $U_{BN} = 0.0 \ V$ b) $U_{BN} = 9.0 \ V$ c) $U_{PN} = 0.0 \ V$ d) $U_{PN} = 9.0 \ V$
- e) $U_{PB} = 9.0 V$
- b d С

2. L'interrupteur K est à présent fermé pour toutes les questions suivantes.

Cocher la ou les relations justes :

- a) I = I
- b) $I = I_1$
- c) $I = I_2$
- d) $I_1 = I_2$
- e) $I_2 = I' I_1$
- а h С d е

- La résistance du conducteur ohmique R est égale à :
 - a) 0Ω
- b) 30Ω
- c) 50Ω
- d) 60Ω
- e) 100Ω
- b d а С е


- d b С е

- 4. Cocher la ou les relations justes :
 - a) $U_{PN} = U_{AB}$
- b) $U_{AB} = U_{CD}$
- c) $U_{PN} = U_{PB}$
- d) $U_{PB} = U_{AD}$
- e) $U_{AB} = U_{AD}$

- La différence de potentiels UAB est égale à : 5.
 - a) 9,0 V
- b) 7,0 V
- c) 6.0 V
- d) 4,5 V
- e) 2,0 V
- b С d а е

- L'intensité I₁ est égale à : 6.
 - a) 20 *mA*
- b) 40 mA
- c) 60 mA
- d) 80 mA
- e) 0,10 A
- b d а С

Exercice 7: **Problème**

On place aux bornes d'un générateur non idéal de force électromotrice E = 12,0 V et de résistance interne r = 7,3 Ω un conducteur ohmique de résistance R = 80 Ω .

(C) Rechercher la valeur de l'intensité I qui circule dans le circuit.